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The motion of a rigid body in an inviscid incompressible fluid of inhomogeneous
density is considered. The size of the body is taken small with respect to the length
scale of the density variations; its shape is otherwise arbitrary. The force and the
torque acting on the body in an arbitrary motion are derived from Hamilton’s
principle of least action, thus offering a variational derivation of Kirchhoff’s equations,
supplemented by the terms due to the density gradient. The force and the torque due
to a density gradient are proportional to the gradient and quadratic in the velocity
and the angular velocity. The same coefficients are shown to govern both the inertial
behaviour of the body, i.e. the response to accelerations, and the effects of density
gradients. The free motion of spheres and two-dimensional circular cylinders is shown
to obey a condition akin to the Fermat principle in optics.

1. Introduction
A rigid body moving in an inviscid and incompressible fluid offers unique dynamic

behaviour due to the reaction of the fluid on the body. This reaction amounts to
increasing the inertia of the body, bringing an added mass as well as an added
moment of inertia and an inertial coupling between translation and rotation. Unlike
the mass of the solid, which is a scalar, the added mass is a tensor. Furthermore, the
added inertia is proportional to the fluid density; therefore, it changes as the body
moves through a fluid of non-uniform density. A thorough analysis of the distortion
of the flow around the body due to the non-uniformity of the fluid has been given by
Eames & Hunt (1997), who derived the lift and the drag force an axisymmetric body
experiences when moving in a weak density gradient. They found very simple relations
between the added mass coefficient and the lift and drag coefficients. Stimulated by
this finding, we present here a derivation of the force and the torque a body of
arbitrary shape experiences when moving and rotating in a weak density gradient.
This derivation, based on the Hamiltonian mechanics of the combined system body
plus fluid, uncovers the relation between the coefficients governing the inertia and
those governing the force and the torque due to density gradients.

2. Motion equations for translation and rotation
The density gradient ∇ρ is considered weak when the variation of the fluid density

ρ along the body is small, i.e. if Eames & Hunt’s (1997) parameter ε = aρ−1∇ρ, a
being the dimension of the body, is small: ε � 1. This condition is assumed to hold
throughout this paper. At vanishing order in ε, the flow of the liquid due to the
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motion of the body can be shown to be potential and linear in both the translation
and rotation velocity of the body at the considered time (Lamb 1932). Then the kinetic
energy T = 1

2

∫
ρv2dV of the fluid can be written, in Batchelor’s (1967) notation,

T (X ,U ,R ,Ω) = 1
2
ρV (αijUiUj + βijUiΩj + γijΩiΩj) (1)

with ρ = ρ(X ), βij = Rik(t)Rjl(t)β
0
kl and correspondingly for αij and γij , where V is

the volume of the body, X is the position of a point of the body chosen as the
origin of a frame attached to it, hereafter called the rotating frame, and R(t) is
the time-dependent rotation tensor transforming the orientation of the rotating axes
into that of the fixed axes. The tensors α, β and γ are characteristics of the body;
they rotate along with the rotating frame, so they assume the respective constant
values α0, β0 and γ0 in the rotating frame. These tensors depend on the shape of the
body and are proportional to its length a at the power 0, 1 and 2 respectively. The
kinetic energy depends on X through the variation of the local density ρ, i.e. at the
considered precision, the kinetic energy is the same as if the fluid density around the
body were uniform and equal to ρ(X ). Considering the distortion of the flow field due
to the density gradient would lead to correcting expression (1) by terms smaller by
a factor of order ε. Furthermore, persistent vorticity would make the kinetic energy
(1) depend on the history of motion, instead of being a function of the instantaneous
values of the dynamic variables. In the following, we will ignore such corrections, and
concentrate on the analytical mechanics of systems obeying equation (1) at leading
order in ε. The dynamical variables are the linear velocity U and the angular velocity
Ω

U = Ẋ , Ωi = 1
2
εijkRjlṘkl . (2)

Using the angular velocity Ω instead of the time derivative Ṙ permits the tensorial
complexity of our equations to be lowered. The three components of Ω contain the
same information as the three independent components of Ṙij = εiklΩkRlj . The tensors
α and γ are symmetric and positive definite, and β has no general symmetry but it is
such that T is a positive definite quadratic form U and Ω. Note that expression (1)
is somewhat more general than the kinetic energy of a rigid body in vacuum, which
would have an isotropic mass and an antisymmetric coupling tensor β, reducing to
zero if X is chosen as the centre of mass. In our case, the origin X can be chosen
so as to cancel the antisymmetric part of β , whereas the symmetric part does not
depend on X . The symmetric part of β couples the translation and the rotation, a
characteristic of bodies possessing helical symmetry, like corkscrews and propellers
(Lamb 1932). In the following, no special choice will be made for the origin of the
rotating frame, so β is a general tensor.

The impulse P and the angular impulse Q are (Batchelor 1967)

Pi =
∂T

∂Ui

= ρV (αijUj + 1
2
βijΩj), Qi =

∂T

∂Ωi
= ρV ( 1

2
βjiUj + γijΩj). (3)

These impulses are the quantities conjugate to the displacement and the rotation
of the body in the Hamiltonian sense. In finite mechanical systems, these quantities
coincide with the momentum

∫
ρvdV and the angular momentum

∫
ρ((x−X ) × v)dV

respectively, x and v being the position vector and the velocity of mass element
ρdV . The distinction matters in our system, since the momentum and the angular
momentum lead to integrals of conditional convergence because of the behaviour of
the fluid velocity at infinity (Lamb 1932). A fundamental point is that, after having
established equation (1), it is legitimate of formulate a Hamiltonian description of
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our system based on the sole motion of the body. The infinitely many degrees of
freedom of the fluid are then ignored, even though they are subjected to the non-
holonomic constraint of incompressibility div v = 0, which is a non-integrable relation
between the velocities of the fluid particles. The validity of Hamiltonian mechanics
for rigid bodies moving in fluids of homogeneous density can be directly proved
from the equations of motion of the fluid (Lamb 1932). However, since we consider
fluids of non-uniform density, we must resort to more general arguments using two
particularities of our system. First, the constraints do not work: the rate of work of
compression p divv vanishes, so the work the body performs on the fluid is entirely
converted into kinetic energy, and the system is conservative. Second, the variables X ,
U , R and Ω entering equation (1) are independent, so any variation of the real motion
is a possible motion. As a consequence, since the constraint of incompressibility does
not restrict the motion of the body, the associated forces of constraint vanish (see
§ 2.4 of Goldstein 1980). The dynamics of our system is thus identical with that of a
holonomic system obeying equation (1).

The motion equation for the position variable is then the Lagrange equation

F =
d

dt

∂T

∂U
− ∂T

∂X
= Ṗ − ∂T

∂X
, (4)

where F is the force the body exerts on the fluid. The conservation of the impulse,
which is the integral of the motion associated with the homogeneity of space (Landau
& Lifshitz 1976†), no longer holds here. In other words, the body does not move in
homogeneous empty space because it is ‘clothed’ by the surrounding fluid, which reacts
on the body and contributes to its inertia. This particular space is not homogeneous
but, since T is proportional to ρ at fixed U and Ω, one has

∂T

∂X
= T∇ ln ρ and Ṗ = F + T∇ ln ρ. (5)

The density gradient thus adds a term T∇ ln ρ to the force. However, if the density
depends on one Cartesian coordinate only, say ρ = ρ(x1), then the homogeneity
of space in the 2- and 3-directions still holds and the components P2 and P3 are
conserved whenever F2 and F3 vanish. The time derivative of the density gradient
following the motion of the body, dρ/dt = U · ∇ρ, also contributes to the time
derivative of the impulse, which can be written

Ṗ i = ρV
d

dt

(
αijUj + 1

2
βijΩj

)
+ PjUk∇k ln ρ

= ρV

(
αij

∆Uj

∆t
+ 1

2
βij

∆Ωj
∆t

)
+ εijkΩjPk + PiUk∇k ln ρ, (6)

where ∆/∆t is the derivative with respect to the moving axes, such that ∆α/∆t ∆β/∆t
and ∆γ/∆t vanish, and the term εijkΩjPk compensates for the rotation of the moving
axes with respect to the fixed ones. The Lagrange equation for the position variables
can now be written in full:

Fi = ρV
d

dt

(
αijUj + 1

2
βijΩj

)
+ (PiUj − Tδij)∇j ln ρ

= ρV

(
αij

∆Uj

∆t
+ 1

2
βij

∆Ωj
∆t

)
+ εijkΩjPk +Uj∇jρV (αikUk + 1

2
βikΩk

)
† Note that their definition of the force corresponds to our F + ∂T/∂X .
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− 1
2
∇iρV (αjkUjUk + βjkUjΩk + γjkΩjΩk). (7)

The Lagrange equation for the angular variables should be written in terms of R
and Ṙ , taking into account the fact that R and Ṙ only have three independent
components. Instead of this complicated procedure, we directly derive the angular
motion equations from Hamilton’s principle by considering the variation of the action
integral in a motion varied through an infinitesimal time-dependent rotation δR(t),
of angle δθi(t) = 1

2
εijkRjlδRkl , applied to the unvaried orientation R(t). The angular

velocity at time t is then varied by

δΩ = δθ̇ + δθ ×Ω, (8)

i.e. the variation δθ(t) both adds its time derivative to Ω and rotates it. This can
be seen by considering a vector a linked to the body, i.e. constant in the rotating
frame and consequently such that ȧ = Ω× a. The considered variation makes a vary
by δa = δθ × a, and the time derivative of the varied vector a + δa can be written
d(a+δa)/dt = Ω×a+δθ̇×a+δθ× (Ω×a) = (Ω+δθ̇+δθ×Ω)× (a+δa) +O(δθ2).
The first term in parentheses of the last member is the varied angular velocity Ω+δΩ,
hence equation (8), neglecting the second-order term −(δθ̇ + δθ ×Ω)× δa = O(δθ2).
The kinetic energy is thus varied though both the change of angular velocity δΩ and
through the change of orientation of the tensors α, β, γ and of the vector Ω. Since
rotating α, β, γ and Ω, by δθ while keeping U constant is equivalent to rotating U
by −δθ at constant α, β, γ and Ω, the first-order variation of T can be written

δT =
∂T

∂Ω
· δθ̇ − ∂T

∂U
· (δθ ×U ) = Q · δθ̇ − P · (δθ ×U )

=
d

dt
(Q · δθ)− (Q̇ +U × P) · δθ. (9)

The potential energy W varies by

δW = −Γ · δθ (10)

and Hamilton’s principle (Goldstein 1980) states that the action integral S taken
between any given times t1 and t2 is stationary with respect to any variation of the
motion, so the first-order variation of S cancels. In the considered case of variation
δθ(t) of the orientation of the body, the first-order variation is

0 = δS = δ

∫ t2

t1

(T −W )dt

= [Q · δθ]t2t1 +

∫ t2

t1

(−Q̇ −U × P + Γ) · δθdt. (11)

Since δθ(t) is arbitrary, a necessary condition for the stationarity of the action is that
the term in parentheses vanishes, giving the angular motion equation

Γ = Q̇ +U × P . (12)

The time derivative Q̇ can be split into two components, in the same way as Ṗ in
equation (6),

Q̇i = ρV

(
1
2
βji

∆Uj

∆t
+ γij

∆Ωj
∆t

)
+ εijkΩjQk + QiUk∇k ln ρ, (13)
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giving the angular motion equation

Γi = ρV

(
1
2
βji

∆Uj

∆t
+ γij

∆Ωj
∆t

)
+ εijkΩjQk + εijkUjPk + QiUk∇k ln ρ. (14)

Equations (7) and (14) are the Kirchhoff equations for the motion of a solid moving
in a perfect fluid (Lamb 1932), supplemented by the effect of the density gradient.

The conservation of energy holds as a consequence of the homogeneity of time
(Landau & Lifshitz 1976), which is not broken by the existence of time-independent
density gradients. Indeed, the rate of work of the force, obtained from equation (7), is

F ·U = ρV

(
αijUi

∆Uj

∆t
+ 1

2
βijUi

∆Ωj
∆t

)
+ εijkUiΩjPk + (P ·U − T )U · ∇ ln ρ (15)

and the rate of work of the torque is, from equation (14),

Γ ·Ω = ρV

(
1
2
βjiΩi

∆Uj

∆t
+ γijΩi

∆Ωj
∆t

)
+ εijkΩiUjPk +Q ·ΩU · ∇ ln ρ. (16)

Recalling that ∆αij/∆t, ∆βij/∆t, and ∆γij/∆t vanish, the total rate of work can be
written

F ·U +Γ ·Ω = 1
2
ρV

∆

∆t
(αijUiUj + βijUiΩj + γijΩiΩj) + (P ·U +Q ·Ω− T )U · ∇ ln ρ

= ρ
d

dt

(
T

ρ

)
+
P ·U +Q ·Ω− T

ρ

dρ

dt
, (17)

where ∆/∆t before the first term in parentheses is substituted for the convected
derivative in the fixed frame d/dt because it acts on the scalar T/ρ. Using Euler’s
theorem on homogeneous functions applied to T as a quadratic function of U and
Ω,

2T = P ·U +Q ·Ω, (18)

eventually yields the total rate of work as the time derivative of the kinetic energy

F ·U + Γ ·Ω =
dT

dt
. (19)

If the force F and the torque Γ vanish, then the kinetic energy is conserved, T = const.,
and if they derive from a time-independent potential energy W , then the total energy
E = T +W is conserved: dE/dt = 0. A more general case is that of a body possessing
its own inertia. Its kinetic energy Tbody = 1

2
MU 2 + 1

2
IijΩiΩj must be added to T given

by equation (1) without alteration of the form of this equation (the origin of the
rotating axes is chosen as the centre of mass of the body, M being the mass and
Iij the tensor of inertia). F and Γ then become the force and the torque acting on
the whole system (fluid + body). Then, if F and Γ derive from a time-independent
potential W , the total energy T +Tbody+W is conserved. By the same token, equation
(14) becomes Euler’s equation for the motion of a rigid body of inertia tensor Iij
letting ρ → 0 in equation (1). The last term of equation (14) then vanishes, and so
does the last but one term, due to the fact that the impulse (3) becomes Pbody = MU ,
collinear with the velocity U .

3. Forces and torques in inhomogeneous fluids
We now focus on the specific effect of the density gradient. The force Φ and the

torque Ξ the fluid exerts on the body due to the density gradient are, from equations
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(7), (14) and (3),

Φi = −Uj∇jρV (αikUk + 1
2
βikΩk) + 1

2
∇iρV (αjkUjUk + βjkUjΩk + γjkΩjΩk),

Ξi = −Uj∇jρV ( 1
2
βkiUk + γikΩk).

}
(20)

Φ and Ξ are quadratic function of U and Ω, linear in ∇ρ, and do not depend on the
accelerations U̇ and Ω̇. Note that Φ and Ξ, being construed as reactions of the fluid
on the body, are defined with a sign opposite of that F and Γ.

Let us first consider the case of motion without rotation. Taking the 1-axis of
the fixed frame along the density gradient evaluated at the considered point and the
2-axis in the plane (U ,∇ρ), one has

∇ρ = ∇ρ
 1

0
0

 , U =

 U1

U2

0

 , Ω = 0. (21)

Equation (20) then gives

Φ = −V∇ρ


1
2
α11U

2
1 − 1

2
α22U

2
2

α12U
2
1 + α22U1U2

α13U
2
1 + α23U1U2

 , Ξ = − 1
2
V∇ρU1

 β11U1 + β21U2

β12U1 + β22U2

β13U1 + β23U2

 . (22)

In general the orientation of ∇ρ varies in space, so the frame within which the two
preceding equations are written is locally defined.

If the velocity is parallel to the density gradient, the force and the torque are

U =

 U
0
0

⇒ Φ = −V∇ρU2

 1
2
α11

α12

α13

 , Ξ = − 1
2
V∇ρU2

 β11

β12

β13

 . (23)

If the cross-terms vanish, α12 = α13 = 0, one has simply Φ = − 1
2
V∇ρα11U

2, so the
body experiences a force directed towards the lighter fluid when moving parallel to
the density gradient, whether it moves towards the denser or towards the lighter
fluid. The component Φ1 has sign opposite that of F1, α11 being positive. This is
understandable in terms of energy conservation: the reaction of the fluid on the
body counteracts the variation of kinetic energy 1

2
ρVα11U

2 due to the change in ρ
by increasing (decreasing) the velocity when the body moves towards lighter (denser)
regions. A body possessing helical symmetry about the 1-axis, such as a corkscrew, is
such that β12 = β13 = 0 and β11 6= 0 (the usual right-handed corkscrew has β11 < 0,
so the kinetic energy T is lowered by a rotation Ω1 = −U 1α11/β11). Such an object
experiences a torque Ξ = − 1

2
V∇ρβ11U

2, so a right-handed corkscrew experiences a
positive torque when moving at constant velocity towards denser fluid, this torque
tending to set the body in a rotation that lowers T , as expected from the conservation
of energy.

A velocity perpendicular to the density gradient generates a force and a torque

U =

 0
U
0

⇒ Φ = 1
2
Vα22∇ρU2, Ξ = 0. (24)

This holds true for bodies of arbitrary shape. The body thus experiences no torque,
and a lift force normal to the velocity, parallel to the density gradient and directed
towards the denser fluid.
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4. Trajectories of spheres and two-dimensional circular cylinders
Our formalism readily applies to the free motion of a sphere or, in two dimensions,

the case of a circular cylinder, taking X as the position of the centre, so that
α = αδ, β = γ = 0. For the sphere, one has α = 1

2
, and for the cylinder α = 1. The

angular coordinates are irrelevant and, if no external forces act on the system, the
force F defined in equation (4) as the force the body exerts on the fluid is such that the
total force vanishes: F+MU̇ = 0, M being the mass of the body. The trajectories then
can be directly determined using Hamilton’s principle together with the conservation
of energy, without actually solving the dynamical problem. Introducing the position
vector X (l) as a function of the curvilinear length l measured along the trajectory,
the kinetic energy T of the total system (body and fluid) is

T = 1
2
m̃U 2 = 1

2
m̃

(
dl

dt

)2

⇒ dt =

(
m̃

2T

)1/2

dl where m̃ = αρV +M; (25)

m̃ is the effective mass of the sphere or the cylinder, ‘clothed’ by the fluid. In the free
motion we consider, the kinetic energy T is a constant, and the action integral S for
the whole system, taken between times t1 and t2 can be written in terms of J , the

curvilinear integral of
√
m̃ performed along the trajectory:

S = T

∫ t2

t1

dt = ( 1
2
T )1/2J, where J =

∫ X 2

X 1

m̃1/2dl. (26)

The stationarity condition for S implies a condition on J , i.e. a condition on the
trajectory alone, irrespective of the velocity at which this trajectory is followed.
Consider therefore a variation δX (t) of the trajectory, keeping the same the initial
and final points: δX (t1) = δX (t2) = 0. From now on, we restrict our attention to
varied trajectories followed at such a velocity as to keep T independent of time, but
not necessarily equal to its value in the unvaried motion. In fact, the variation δT
is such that the varied trajectory is still covered within the time span t2 − t1. The
first-order variations of the three members of equation (26) are such that

δS = (t1 − t2)δT = Jδ (( 1
2
T )1/2) + ( 1

2
T )1/2δJ; (27)

thus the stationarity condition δS = 0 implies that both T and J are stationary:

δT = 0 and δJ = 0. (28)

The stationarity condition for the integral J is analogous to Fermat’s principle stating
the stationarity of the optical path in a medium of optical index n = m̃1/2. Introducing
the unit tangent t = dX/dl, the stationarity condition for J can be written

0 = δJ =

∫ X 2

X 1

(
δX · ∇m̃1/2 + m̃1/2t · dδX

dl

)
dl

= [m̃1/2t · δX ]X 2

X 1
+

∫ X 2

X 1

(
∇m̃1/2 − d

dl
(m̃1/2t)

)
· δXdl. (29)

The integrated term vanishes, and the condition that the integrand ∇m̃1/2−(d/dl)(m̃1/2t)
must vanish identically gives the equation of the trajectory, which can be written using
the radius of curvature R and the unit normal n = Rdt/dl (Landau & Lifshitz 1984):

n

R
= ∇ ln m̃1/2 − t t · ∇ ln m̃1/2, R−1 = n · ∇ ln m̃1/2. (30)
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The trajectory thus determined does not depend on the magnitude of the velocity, i.e.
it is determined by one of its points and by the direction t of the velocity at that
point. It must be noted that bodies of different diameters, with the same inner density
M/V , have effective mass m̃(X ) = V (ρ(X ) + M/V ) proportional to their respective
volume, so the vector ∇ ln m̃1/2 does not depend on V . The trajectory of a sphere or
a circular cylinder thus only depends on its inner density.

The full dynamical problem requires solving equation (7) in the considered case of
a sphere or a two-dimensional circular cylinder, where this equation reduces to

U̇ = 1
2
U 2 ∇ ln m̃−U U · ∇ ln m̃. (31)

Since the acceleration is a quadratic function of the velocity, the trajectory does not
depend on the magnitude of the velocity, as already noted. Introducing the axes 1
and 2 defined in equation (21) yields

(U̇ )1 = 1
2
∇ ln m̃(U2

2 −U2
1 ), (U̇ )2 = −∇ ln m̃U1U2, (32)

where (U̇ )1, the 1-component of the acceleration, must be distinguished from U̇1, the
time derivative of the 1-component of the velocity.

From now on, consider a density gradient which is uniform in direction, i.e. when
ρ = ρ(x1) in a uniquely defined frame. Then (U̇ )1 and (U̇ )2 coincide with U̇ 1 and U̇ 2

respectively. Since the density gradient lies along the 1-axis, and according to equation
(5), the 2-component of the impulse of the total system (body + fluid) is conserved:

P2 = m̃U2 = const. (33)

and the conservation of energy can be written

2T = m̃(U2
1 +U2

2 ) =
P 2

2

m̃
+ m̃U2

1 = const. (34)

U2
1 being positive and P2 = m̃U2 constant, the motion is limited to the region of space

where

m̃ >
P 2

2

2T
. (35)

The trajectory of the body can have a tangent contact with the surface m̃ = P 2
2 /2T ,

with U1 = 0 and U2 = 2T/P2 at the contact point, and the body experiences a lift
force given by equation (24), bending the trajectory towards the denser regions, in
accordance with equation (30). This is an analogue of the mirage in optics, which
follows from the Fermat principle similar to our equations (27) and (29). Equations
(33) and (34) give the velocity, expressed as a function of m̃, i.e. of X

U1 = ±
(

2T

m̃
−
(
P2

m̃

)2
)1/2

, U2 =
P2

m̃
, (36)

where the ± sign refers to the two branches of the trajectory, separated by the contact
with the surface m̃ = P 2

2 /2T . The time can be expressed as a function of X1 by
integrating the first equation (36), and then X2 follows from the second equation (36):

t(X1) = ±
∫ X1

0

(
2T

m̃(ξ)
−
(
P2

m̃(ξ)

)2
)−1/2

dξ, X2 = P2

∫ t

0

dt′

m̃(t′)
, (37)

where the contact with the surface m̃ = P 2
2 /2T defines the origin of time and
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space. Equations (36) and (37) permit the motion to be determined without actually
integrating the motion equations (32).

A special case in which analytic integration is simple is that of an effective mass
m̃(X ) varying according to

m̃ =
P 2

2

2T
eX1/λ, such that ∇ ln m̃ = λ−1 = const. (38)

Condition (35) then confines the motion to the half-space x1 > 0, and equation (37)
readily gives

t = ±λP2

T
(eX1/λ − 1)1/2, X1 = λ ln

((
Tt

λP2

)2

+ 1

)
, X2 = 2λ arctan

Tt

λP2

. (39)

Eliminating the time from the last two equations yields the equation of the trajectory
X1 = −2λ ln cosX2/2λ. This trajectory has a finite extent in the 2-direction, from
X2 = −πλ to πλ.

Consider another case of integrable motion, the linear profile of effective mass, of
uniform gradient µ:

m̃ = µ(X1 + λ), with λ =
P 2

2

2µT
. (40)

The motion is again restricted to the half-space x1 > 0 and, introducing the dimen-
sionless time τ, one gets

τ =
3T 2µ

P 3
2

t = 1
2

(
3 +

X1

λ

)(
X1

λ

)1/2

,

X1 = λΘ2,

X2 = 2λΘ,

 with Θ =
(
(1 + τ2)1/2 + τ

)1/3 − ((1 + τ2)1/2 − τ)1/3
.


(41)

The trajectory is a parabola, described at non-uniform velocity. Unlike the preceding
one, this trajectory has infinite extent in the 2-direction.

Our results must now be compared to those obtained by Eames & Hunt (1997).
These authors introduce three coefficients: the added-mass coefficient CM which
governs the kinetic energy, and the lift and drag coefficients CL and CD giving
the lift and drag forces respectively. CM depends on the relative orientation of
the body and the velocity, in our notation CM(U ) = αijUiUj/U

2. They derive the
relations CL = 1

2
CM (U⊥∇ρ) and CD = 1

2
CM(U̇ ‖ ∇ρ), i.e. CL = α22 and CD = α11

in the orientation of equation (21), in agreement with our equations (24) and (23)
respectively, in the case of bodies symmetric about the direction of U , such that the
off-diagonal components of α vanish. For two-dimensional bodies possessing the same
symmetry, they get CL = 1

2
(1 + CM(U⊥∇ρ)) and CD = 1

2
CM(U ‖∇ρ), which implies a

discontinuity in the lift force when going from elongated three-dimensional to truly
two-dimensional bodies. Our analysis however shows that the relations they obtained
in the three-dimensional case necessarily hold for two-dimensional bodies as well.

In conclusion, our formalism gives a general and compact derivation, valid for
bodies of arbitrary shape, of the force and the torque due to a weak density gradient,
demonstrating that the same coefficients α, β and γ govern both the effects of the
density gradient and the inertial reaction of the fluid on the body. In addition it
permits us to formulate the fundamental mechanical laws of conservation valid in
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this particular system. Besides their fundamental interest, these laws allow in some
cases a direct determination of the motion.
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